Bordism, rho-invariants and the Baum–Connes conjecture
نویسندگان
چکیده
Let ! be a finitely generated discrete group. In this paper we establish vanishing results for rho-invariants associated to (i) the spin Dirac operator of a spin manifold with positive scalar curvature and fundamental group !; (ii) the signature operator of the disjoint union of a pair of homotopy equivalent oriented manifolds with fundamental group ! . The invariants we consider are more precisely ! theAtiyah–Patodi–Singer (!APS) rho-invariant associated to a pair of finite dimensional unitary representations "1;"2 W ! ! U.d/, ! the L-rho-invariant of Cheeger–Gromov, ! the delocalized eta-invariant of Lott for a non-trivial conjugacy class of ! which is finite. We prove that all these rho-invariants vanish if the group! is torsion-free and the Baum–Connes map for the maximal group C*-algebra is bijective. This condition is satisfied, for example, by torsion-free amenable groups or by torsion-free discrete subgroups of SO.n; 1/ and SU.n; 1/. For the delocalized invariant we only assume the validity of the Baum–Connes conjecture for the reduced C*-algebra. In addition to the examples above, this condition is satisfied e.g. by Gromov hyperbolic groups or by cocompact discrete subgroups of SL.3;C/. In particular, the three rho-invariants associated to the signature operator are, for such groups, homotopy invariant. For the APS and the Cheeger–Gromov rho-invariants the latter result had been established by Navin Keswani. Our proof reestablishes this result and also extends it to the delocalized eta-invariant of Lott. The proof exploits in a fundamental way results from bordism theory as well as various generalizations of the APS-index theorem; it also embeds these results in general vanishing phenomena for degree zero higher rho-invariants (taking values in A=ŒA;A# for suitable C*-algebras A). We also obtain precise information about the eta-invariants in question themselves, which are usually much more subtle objects than the rho-invariants. Mathematics Subject Classification (2000). 58J28, 19K56.
منابع مشابه
The Baum-connes Conjecture for Hyperbolic Groups
The Baum-Connes conjecture states that, for a discrete group G, the K-homology groups of the classifying space for proper G-action is isomorphic to the K-groups of the reduced group C-algebra of G [3, 2]. A positive answer to the Baum-Connes conjecture would provide a complete solution to the problem of computing higher indices of elliptic operators on compact manifolds. The rational injectivit...
متن کاملExpanders, Exact Crossed Products, and the Baum-connes Conjecture
Abstract. We reformulate the Baum-Connes conjecture with coe cients by introducing a new crossed product functor for C⇤-algebras. All confirming examples for the original Baum-Connes conjecture remain confirming examples for the reformulated conjecture, and at present there are no known counterexamples to the reformulated conjecture. Moreover, some of the known expander-based counterexamples to...
متن کاملDeformation Quantization and the Baum–Connes Conjecture
Alternative titles of this paper would have been “Index theory without index” or “The Baum–Connes conjecture without Baum.” In 1989, Rieffel introduced an analytic version of deformation quantization based on the use of continuous fields ofC∗-algebras. We review how a wide variety of examples of such quantizations can be understood on the basis of a single lemma involving amenable groupoids. Th...
متن کاملIndex, Eta and Rho Invariants on Foliated Bundles
We study primary and secondary invariants of leafwise Dirac operators on foliated bundles. Given such an operator, we begin by considering the associated regular self-adjoint operator Dm on the maximal Connes-Skandalis Hilbert module and explain how the functional calculus of Dm encodes both the leafwise calculus and the monodromy calculus in the corresponding von Neumann algebras. When the fol...
متن کاملK-théorie Bivariante Pour Les Algèbres De Banach, Groupoïdes Et Conjecture De Baum–connes. Avec Un Appendice D’hervé Oyono-oyono
We construct a KK-theory for Banach algebras, equivariant with respect to the action of a groupoid. We prove the Baum–Connes conjecture with commutative coefficients for hyperbolic groups and for the Poincaré groupoids of foliations with a compact base and a longitudinal Riemannian metrics with negative sectional curvature. Mots clés : théorie de Kasparov ; conjecture de Baum–Connes ; algèbres ...
متن کامل